
PyEHM
Release 2.0a1

Lyudmil Vladimirov

Mar 27, 2023

CONTENTS

1 Installation 3
1.1 Install via pip . 3
1.2 Install from source . 3
1.3 Development . 3

2 API Reference 5
2.1 Core API . 5
2.2 Net API . 7
2.3 Utils API . 11
2.4 Plotting API . 11
2.5 Plugins . 12

3 Examples 15
3.1 Basic Example . 15
3.2 Standard JPDA vs EHM vs EHM2 . 16

4 License 21

Bibliography 23

Index 25

i

ii

PyEHM, Release 2.0a1

PyEHM is an open-source python package that includes implementations of the Efficient Hypothesis Management
(EHM) Algorithms described in [EHM1], [EHM2] and covered by the patent [EHMPAT].

CONTENTS 1

PyEHM, Release 2.0a1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Install via pip

You can install the latest release of PyEHM on PyPI by using:

python -m pip install pyehm

1.2 Install from source

To install the latest version from the GitHub repository:

python -m pip install git+https://github.com/sglvladi/pyehm#egg=pyehm

1.3 Development

If you are looking to carry out development on PyEHM, you should first clone from GitHub and install with development
dependencies by doing the following:

git clone "https://github.com/sglvladi/pyehm"
cd pyehm
python -m pip install -e .[dev]

3

PyEHM, Release 2.0a1

4 Chapter 1. Installation

CHAPTER

TWO

API REFERENCE

2.1 Core API

The core components of PyEHM are the EHM and EHM2 classes, that constitute implementations of the EHM [EHM1]
and EHM2 [EHM2] algorithms for data association.

The interfaces of these classes are documented below.

class pyehm.core.EHM

Efficient Hypothesis Management (EHM)

An implementation of the EHM algorithm, as documented in [EHM1].

static compute_association_probabilities(net: EHMNet, likelihood_matrix: numpy.ndarray)→
numpy.ndarray

Compute the joint association weights, as described in Section 3.3 of [EHM1]

Parameters

• net (EHMNet) – A net object representing the valid joint association hypotheses

• likelihood_matrix (numpy.ndarray) – A matrix of shape (num_tracks,
num_detections + 1) containing the unnormalised likelihoods for all combinations
of tracks and detections. The first column corresponds to the null hypothesis.

Returns
A matrix of shape (num_tracks, num_detections + 1) containing the normalised association
probabilities for all combinations of tracks and detecrtons. The first column corresponds to
the null hypothesis.

Return type
numpy.ndarray

static construct_net(validation_matrix: numpy.ndarray)→ EHMNet
Construct the EHM net as per Section 3.1 of [EHM1]

Parameters
validation_matrix (numpy.ndarray) – An indicator matrix of shape (num_tracks,
num_detections + 1) indicating the possible (aka. valid) associations between tracks and
detections. The first column corresponds to the null hypothesis (hence contains all ones).

Returns
The constructed net object

Return type
EHMNet

5

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PyEHM, Release 2.0a1

static run(validation_matrix: numpy.ndarray, likelihood_matrix: numpy.ndarray)→ numpy.ndarray
Run EHM to compute and return association probabilities

Parameters

• validation_matrix (numpy.ndarray) – An indicator matrix of shape (num_tracks,
num_detections + 1) indicating the possible (aka. valid) associations between tracks and
detections. The first column corresponds to the null hypothesis (hence contains all ones).

• likelihood_matrix (numpy.ndarray) – A matrix of shape (num_tracks,
num_detections + 1) containing the unnormalised likelihoods for all combinations
of tracks and detections. The first column corresponds to the null hypothesis.

Returns
A matrix of shape (num_tracks, num_detections + 1) containing the normalised association
probabilities for all combinations of tracks and detections. The first column corresponds to
the null hypothesis.

Return type
numpy.ndarray

class pyehm.core.EHM2

Efficient Hypothesis Management 2 (EHM2)

An implementation of the EHM2 algorithm, as documented in [EHM2].

static compute_association_probabilities(net: EHM2Net, likelihood_matrix: numpy.ndarray)→
numpy.ndarray

Compute the joint association weights, as described in Section 4.2 of [EHM2]

Parameters

• net (EHMNet) – A net object representing the valid joint association hypotheses

• likelihood_matrix (numpy.ndarray) – A matrix of shape (num_tracks,
num_detections + 1) containing the unnormalised likelihoods for all combinations
of tracks and detections. The first column corresponds to the null hypothesis.

Returns
A matrix of shape (num_tracks, num_detections + 1) containing the normalised association
probabilities for all combinations of tracks and detecrtons. The first column corresponds to
the null hypothesis.

Return type
numpy.ndarray

static construct_net(validation_matrix: numpy.ndarray)→ EHM2Net
Construct the EHM2 net as per Section 4 of [EHM2]

Parameters
validation_matrix (numpy.ndarray) – An indicator matrix of shape (num_tracks,
num_detections + 1) indicating the possible (aka. valid) associations between tracks and
detections. The first column corresponds to the null hypothesis (hence contains all ones).

Returns
The constructed net object

Return type
EHM2Net

6 Chapter 2. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PyEHM, Release 2.0a1

static construct_tree(validation_matrix: numpy.ndarray)→ EHM2Tree
Construct the EHM2 tree as per section 4.3 of [EHM2]

Parameters
validation_matrix (numpy.ndarray) – An indicator matrix of shape (num_tracks,
num_detections + 1) indicating the possible (aka. valid) associations between tracks and
detections. The first column corresponds to the null hypothesis (hence contains all ones).

Returns
The constructed tree object

Return type
EHM2Tree

static run(validation_matrix: numpy.ndarray, likelihood_matrix: numpy.ndarray)→ numpy.ndarray
Run EHM2 to compute and return association probabilities

Parameters

• validation_matrix (numpy.ndarray) – An indicator matrix of shape (num_tracks,
num_detections + 1) indicating the possible (aka. valid) associations between tracks and
detections. The first column corresponds to the null hypothesis (hence contains all ones).

• likelihood_matrix (numpy.ndarray) – A matrix of shape (num_tracks,
num_detections + 1) containing the unnormalised likelihoods for all combinations
of tracks and detections. The first column corresponds to the null hypothesis.

Returns
A matrix of shape (num_tracks, num_detections + 1) containing the normalised association
probabilities for all combinations of tracks and detections. The first column corresponds to
the null hypothesis.

Return type
numpy.ndarray

2.2 Net API

The pyehm.net module contains classes that implement the structures (nets, nodes, trees) constructed by the EHM and
EHM2 classes.

class pyehm.net.EHMNetNode(layer: int, identity: Set[int])
A node in the EHMNet constructed by EHM .

Parameters

• layer (int) – Index of the network layer in which the node is placed. Since a different layer
in the network is built for each track, this also represented the index of the track this node
relates to.

• identity (set of int) – The identity of the node. As per Section 3.1 of [EHM1], “the
identity for each node is an indication of how measurement assignments made for tracks
already considered affect assignments for tracks remaining to be considered”.

class pyehm.net.EHM2NetNode(layer: int, track: int, subnet: int, identity: Set[int])
A node in the EHM2Net constructed by EHM2.

Parameters

• layer (int) – Index of the network layer in which the node is placed.

2.2. Net API 7

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyEHM, Release 2.0a1

• track (int) – Index of track this node relates to.

• subnet (int) – Index of subnet to which the node belongs.

• identity (set of int) – The identity of the node. As per Section 3.1 of [EHM1], “the
identity for each node is an indication of how measurement assignments made for tracks
already considered affect assignments for tracks remaining to be considered”.

class pyehm.net.EHMNet(root: EHMNetNode, validation_matrix: numpy.ndarray)
Represents the nets constructed by EHM .

Parameters

• root (EHMNetNode) – The net root node.

• validation_matrix (numpy.ndarray) – An indicator matrix of shape (num_tracks,
num_detections + 1) indicating the possible (aka. valid) associations between tracks and
detections. The first column corresponds to the null hypothesis (hence contains all ones).

add_edge(parent: EHMNetNode, child: EHMNetNode, detection: int)
Add edge between two nodes, or update an already existing edge by adding the detection to it.

Parameters

• parent (EHMNetNode) – The parent node, i.e. the source of the edge.

• child (EHMNetNode) – The child node, i.e. the target of the edge.

• detection (int) – Index of measurement representing the parent child relationship.

add_node(node: EHMNetNode, parent: EHMNetNode, detection: int)
Add a node to the network.

Parameters

• node (EHMNetNode) – The node to be added.

• parent (EHMNetNode) – The parent of the node.

• detection (int) – Index of measurement representing the parent child relationship.

get_children(node: EHMNetNode)→ List[EHMNetNode]
Get the children of a node.

Parameters
node (EHMNetNode) – The node whose children should be returned

Returns
List of child nodes

Return type
list of EHMNetNode

get_edges(parent: EHMNetNode, child: EHMNetNode)→ List[int]
Get edges between two nodes.

Parameters

• parent (EHMNetNode) – The parent node, i.e. the source of the edge.

• child (EHMNetNode) – The child node, i.e. the target of the edge.

Returns
Indices of measurements representing the parent child relationship.

8 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyEHM, Release 2.0a1

Return type
list of int

get_parents(node: EHMNetNode)→ List[EHMNetNode]
Get the parents of a node.

Parameters
node (EHMNetNode) – The node whose parents should be returned

Returns
List of parent nodes

Return type
list of EHMNetNode

property nodes

The nodes comprising the net

property nodes_forward

The net nodes, ordered by increasing layer

property num_layers

Number of layers in the net

property num_nodes

Number of nodes in the net

property root

The root node of the net

class pyehm.net.EHM2Net(root: EHM2NetNode, validation_matrix: numpy.ndarray)
Represents the nets constructed by EHM2.

Parameters

• root (EHM2NetNode) – The net root node.

• validation_matrix (numpy.ndarray) – An indicator matrix of shape (num_tracks,
num_detections + 1) indicating the possible (aka. valid) associations between tracks and
detections. The first column corresponds to the null hypothesis (hence contains all ones).

add_edge(parent: EHM2NetNode, child: EHM2NetNode, detection: int)
Add edge between two nodes, or update an already existing edge by adding the detection to it.

Parameters

• parent (EHM2NetNode) – The parent node, i.e. the source of the edge.

• child (EHM2NetNode) – The child node, i.e. the target of the edge.

• detection (int) – Index of measurement representing the parent child relationship.

add_node(node: EHM2NetNode, parent: EHM2NetNode, detection: int)
Add a new node in the network.

Parameters

• node (EHM2NetNode) – The node to be added.

• parent (EHM2NetNode) – The parent of the node.

• detection (int) – Index of measurement representing the parent child relationship.

2.2. Net API 9

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyEHM, Release 2.0a1

get_children_per_detection(node: EHM2NetNode, detection: int)→ List[EHM2NetNode]
Get the children of a node for a particular detection.

Parameters

• node (EHM2NetNode) – The node whose children should be returned.

• detection (int) – The target detection.

get_nodes_per_layer_subnet(layer: int, subnet: int)→ List[EHM2NetNode]
Get nodes for a particular layer in a subnet.

Parameters

• layer (int) – The target layer.

• subnet (int) – The target subnet.

Returns
List of nodes in the target layer and subnet.

Return type
list of EHM2NetNode

property nodes

The nodes comprising the net

property nodes_forward

The net nodes, ordered by increasing layer

property nodes_per_track

Dictionary containing the nodes per track

property num_layers

Number of layers in the net

property num_nodes

Number of nodes in the net

property root

The root node of the net

class pyehm.net.EHM2Tree(track: int, children: List[EHM2Tree], detections: Set[int], subtree: int)
Represents the track tree structure generated by construct_tree().

The EHM2Tree object represents both a tree as well as the root node in the tree.

Parameters

• track (int) – The index of the track represented by the root node of the tree

• children (list of EHM2Tree) – Sub-trees that are children of the current tree

• detections (set of int) – Set of accumulated detections

• subtree (int) – Index of subtree the current tree belongs to.

property depth

The depth of the tree

10 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyEHM, Release 2.0a1

2.3 Utils API

The pyehm.utils module contains helper classes and functions.

class pyehm.utils.Cluster(tracks: List[int], detections: List[int] = [], validation_matrix: numpy.ndarray =
numpy.array([]), likelihood_matrix: numpy.ndarray = numpy.array([]))

A cluster of tracks sharing common detections.

Parameters

• tracks (list of int) – Indices of tracks in cluster

• detections (list of int) – Indices of detections in cluster. Defaults to an empty list.

• validation_matrix (numpy.ndarray) – The validation matrix for tracks and detections
in the cluster. Defaults to an empty array.

• likelihood_matrix (numpy.ndarray) – The likelihood matrix for tracks and detections
in the cluster. Defaults to an empty array.

pyehm.utils.gen_clusters(validation_matrix: numpy.ndarray, likelihood_matrix: numpy.ndarray =
numpy.array([]))→ List[Cluster]

Cluster tracks into groups sharing detections

Parameters

• validation_matrix (numpy.ndarray) – An indicator matrix of shape (num_tracks,
num_detections + 1) indicating the possible (aka. valid) associations between tracks and
detections. The first column corresponds to the null hypothesis (hence contains all ones).

• likelihood_matrix (numpy.ndarray) – A matrix of shape (num_tracks, num_detections
+ 1) containing the unnormalised likelihoods for all combinations of tracks and detections.
The first column corresponds to the null hypothesis. Defaults to an empty array, in which
case the likelihood matrices of the generated clusters will also be empty arrays.

pyehm.utils.to_nx_graph(obj: EHMNet | EHM2Net | EHM2Tree)→ Graph
Get a NetworkX representation of a net or tree. Mainly used for plotting.

Parameters
obj (EHMNet | EHM2Net | EHM2Tree) – The object to convert to a NetworkX graph.

Returns
The NetworkX graph representation of the object.

Return type
networkx.Graph

2.4 Plotting API

The pyehm.plot module contains helper functions for plotting the nets and trees constructed by the EHM and EHM2
classes.

Warning: The plotting functions require Graphviz to be installed and on the PATH.

2.3. Utils API 11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph
https://graphviz.org/

PyEHM, Release 2.0a1

pyehm.plotting.plot_net(net: EHMNet | EHM2Net, ax: Axes = None, annotate=True)
Plot the net.

Parameters

• net (EHMNet | EHM2Net) – The net to plot.

• ax (matplotlib.axes.Axes) – Axes on which to plot the net. If None, a new figure and
axes will be created.

• annotate (bool) – Flag that dictates whether to draw node and edge labels on the plotted
net. The default is True

pyehm.plotting.plot_tree(tree: EHM2Tree, ax: Axes = None, annotate=True)
Plot the tree.

Parameters

• tree (EHM2Tree) – The tree to plot.

• ax (matplotlib.axes.Axes) – Axes on which to plot the tree. If None, a new figure and
axes will be created.

• annotate (bool) – Flag that dictates whether to draw node labels on the plotted tree. The
default is True

2.5 Plugins

2.5.1 Stone Soup

class pyehm.plugins.stonesoup.JPDAWithEHM(hypothesiser: PDAHypothesiser)
Bases: JPDA

Joint Probabilistic Data Association with Efficient Hypothesis Management (EHM)

This is a faster alternative of the standard JPDA algorithm, which makes use of Efficient Hypothesis Management
(EHM) to efficiently compute the joint associations. See Maskell et al. (2004) [EHM1] for more details.

associate(tracks, detections, timestamp, **kwargs)
Associate tracks and detections

Parameters

• tracks (set of stonesoup.types.track.Track) – Tracks which detections will be as-
sociated to.

• detections (set of stonesoup.types.detection.Detection) – Detections to be as-
sociated to tracks.

• timestamp (datetime.datetime) – Timestamp to be used for missed detections and to
predict to.

Returns
Mapping of track to Hypothesis

Return type
mapping of stonesoup.types.track.Track : stonesoup.types.hypothesis.
Hypothesis

12 Chapter 2. API Reference

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#bool
https://stonesoup.readthedocs.io/en/latest/stonesoup.hypothesiser.html#stonesoup.hypothesiser.probability.PDAHypothesiser
https://stonesoup.readthedocs.io/en/latest/stonesoup.dataassociator.html#stonesoup.dataassociator.probability.JPDA
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.track.Track
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.detection.Detection
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.track.Track
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.hypothesis.Hypothesis
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.hypothesis.Hypothesis

PyEHM, Release 2.0a1

class pyehm.plugins.stonesoup.JPDAWithEHM2(hypothesiser: PDAHypothesiser)
Bases: JPDAWithEHM

Joint Probabilistic Data Association with Efficient Hypothesis Management 2 (EHM2)

This is an enhanced version of the JPDAWithEHM algorithm, that makes use of the Efficient Hypothesis Manage-
ment 2 (EHM2) algorithm to efficiently compute the joint associations. See Horridge et al. (2006) [EHM2] for
more details.

associate(tracks, detections, timestamp, **kwargs)
Associate tracks and detections

Parameters

• tracks (set of stonesoup.types.track.Track) – Tracks which detections will be as-
sociated to.

• detections (set of stonesoup.types.detection.Detection) – Detections to be as-
sociated to tracks.

• timestamp (datetime.datetime) – Timestamp to be used for missed detections and to
predict to.

Returns
Mapping of track to Hypothesis

Return type
mapping of stonesoup.types.track.Track : stonesoup.types.hypothesis.
Hypothesis

2.5. Plugins 13

https://stonesoup.readthedocs.io/en/latest/stonesoup.hypothesiser.html#stonesoup.hypothesiser.probability.PDAHypothesiser
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.track.Track
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.detection.Detection
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.track.Track
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.hypothesis.Hypothesis
https://stonesoup.readthedocs.io/en/latest/stonesoup.types.html#stonesoup.types.hypothesis.Hypothesis

PyEHM, Release 2.0a1

14 Chapter 2. API Reference

CHAPTER

THREE

EXAMPLES

3.1 Basic Example

import numpy as np

3.1.1 Formulating the possible associations between targets and measurements

Both EHM and EHM2 operate on a validation_matrix and a likelihood_matrix. The validation_matrix is
an indicator matrix that represents the possible associations between different targets and measurements, while the
likelihood_matrix contains the respective likelihoods/probabilities of these associations. Both matrices have a
shape (N_T, N_M+1), where N_T is the number of targets and N_M is the numer of measurements.

For example, assume we have the following scenario of 4 targets and 4 measurements (taken from Section 4.4 of
[EHM2]):

Target index Gated measurement indices
0 0, 1
1 0, 1, 2, 3
2 0, 1, 2
3 0, 3, 4

where the null measurement hypothesis is given the index of 0. Then the validation_matrix would be a (4, 5)
numpy array of the following form:

validation_matrix = np.array([[1, 1, 0, 0, 0], # 0 -> 0,1
[1, 1, 1, 1, 0], # 1 -> 0,1,2,3
[1, 1, 1, 0, 0], # 2 -> 0,1,2
[1, 0, 0, 1, 1]]) # 3 -> 0,3,4

The likelihood_matrix is such that each element likelihood_matrix[i, j] contains the respective likelihood
of target i being associated to measurement j. Therefore, based on the above example, the likelihood_matrix
could be the following:

likelihood_matrix = np.array([[0.1, 0.9, 0, 0, 0],
[0.1, 0.3, 0.2, 0.4, 0],
[0.7, 0.1, 0.2, 0, 0],
[0.2, 0, 0, 0.75, 0.05]])

15

PyEHM, Release 2.0a1

3.1.2 Computing joint association probabilities

Based on the above, we can use EHM or EHM2 to compute the joint association probabilities matrix assoc_matrix as
follows:

from pyehm.core import EHM, EHM2

assoc_matrix_ehm = EHM.run(validation_matrix, likelihood_matrix)
print('assoc_matrix_ehm =\n {}\n'.format(assoc_matrix_ehm))
or
assoc_matrix_ehm2 = EHM2.run(validation_matrix, likelihood_matrix)
print('assoc_matrix_ehm2 =\n {}'.format(assoc_matrix_ehm2))

assoc_matrix_ehm =
[[0.17948718 0.82051282 0. 0. 0.]
[0.25925926 0.07692308 0.4045584 0.25925926 0.]
[0.85754986 0.01139601 0.13105413 0. 0.]
[0.35555556 0. 0. 0.55555556 0.08888889]]

assoc_matrix_ehm2 =
[[0.17948718 0.82051282 0. 0. 0.]
[0.25925926 0.07692308 0.4045584 0.25925926 0.]
[0.85754986 0.01139601 0.13105413 0. 0.]
[0.35555556 0. 0. 0.55555556 0.08888889]]

Note that both EHM and EHM2 should produce the same results, although EHM2 should, in principle, be significantly
faster for large numbers of targets and measurements.

Check if the probability matrices produced by EHM and EHM2 are equal
print(np.allclose(assoc_matrix_ehm, assoc_matrix_ehm2))

True

Total running time of the script: (0 minutes 0.006 seconds)

3.2 Standard JPDA vs EHM vs EHM2

Both EHM and EHM2 provide an exact solution to the problem posed by the Joint Probabilistic Data Association (JPDA)
algorithm. However, even though in the naive implementation JPDA the number of hypotheses, and as a direct conse-
quence the time required to evaluate these, increases exponentially with number of targets and measurements, EHM and
EHM2 produce results in sub-exponential time.

16 Chapter 3. Examples

PyEHM, Release 2.0a1

3.2.1 Problem formulation

In this example we will be comparing the computational performance of the EHM and EHM2, against a naive imple-
mentation of JPDA, for a relatively dense scenario of 11 targets and 9 measurements. The validation and likelihood
matrices for this scenario are defined below (For more information on how these matrices are defined, see the Basic
Example):

import itertools
import datetime
import numpy as np

from pyehm.core import EHM, EHM2

validation_matrix = np.array([[1, 1, 1, 0, 1, 0, 1, 1, 0, 0], # 0 -> 0,1,2,4,6,7
[1, 1, 0, 1, 1, 1, 1, 1, 0, 0], # 1 -> 0,1,3,4,5,6,7
[1, 1, 0, 1, 0, 1, 1, 1, 1, 0], # 2 -> 0,1,3,5,6,7,8
[1, 1, 1, 1, 0, 0, 1, 1, 0, 1], # 3 -> 0,1,2,3,6,7,9
[1, 0, 1, 1, 0, 0, 0, 0, 1, 0], # 4 -> 0,2,3,8
[1, 1, 1, 0, 0, 1, 1, 1, 1, 0], # 5 -> 0,1,2,5,6,7,8
[1, 1, 0, 0, 0, 1, 1, 0, 1, 1], # 6 -> 0,1,5,6,8,9
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0], # 7 -> 0,1,2
[1, 0, 0, 1, 1, 1, 1, 1, 1, 0], # 8 -> 0,3,4,5,6,7,8
[1, 0, 0, 0, 1, 0, 1, 1, 1, 0], # 9 -> 0,4,6,7,8
[1, 0, 1, 0, 0, 0, 0, 0, 0, 1]]) # 10 -> 0,2,9

likelihood_matrix = np.array([[0.9, 0.13, 0.1, 0, 0.97, 0, 0.94, 0.55, 0, 0],
[0.55, 0.31, 0, 0.61, 0.27, 0.38, 0.34, 0.58, 0, 0],
[0.61, 0.55, 0, 0.32, 0, 0.25, 0.8, 0.94, 0.62, 0],
[0.45, 0.53, 0.61, 0.19, 0, 0, 0.95, 0.61, 0, 0.17],
[0.67, 0, 0.79, 0.99, 0, 0, 0, 0, 0.71, 0],
[0.51, 0.37, 0.04, 0, 0, 0.53, 0.92, 0.44, 0.95, 0],
[0.31, 0.03, 0, 0, 0, 0.08, 0.68, 0, 0.04, 0.31],
[0.23, 0.09, 0.21, 0, 0, 0, 0, 0, 0, 0],
[0.62, 0, 0, 0.19, 0.17, 0.31, 0.69, 0.89, 0.63, 0],
[0.44, 0, 0, 0, 0.53, 0, 0.49, 0.01, 0.31, 0],
[0.32, 0, 0.56, 0, 0, 0, 0, 0, 0, 0.23]])

3.2.2 EHM vs EHM 2

It is worth noticing that in the above example, targets 7 and 10 are conditionally independent of targets 8 and 9, given
target 6. This is because targets 7 and 10 share a common measurement (2), but do not share any measurements with
targets 8 or 9, which in turn have common measurements (4, 6, 7, 8). Yet, all of them share measurements with target
6.

This is important since EHM2 takes advantage of this conditional independence to reduce the number of nodes in the
constructed net and, as a result, achieve better computational performance than EHM .

To better understand the above, let us examine the number of nodes in the nets produced by the two algorithms:

Net constructed using EHM
net1 = EHM.construct_net(validation_matrix)

Net constructed using EHM2
(continues on next page)

3.2. Standard JPDA vs EHM vs EHM2 17

PyEHM, Release 2.0a1

(continued from previous page)

net2 = EHM2.construct_net(validation_matrix)

print('No. of nodes in EHM net: {}'.format(net1.num_nodes))
print('No. of nodes in EHM2 net: {}'.format(net2.num_nodes))

No. of nodes in EHM net: 2050
No. of nodes in EHM2 net: 1317

3.2.3 Standard JPDA

Below we define the function jpda that computes the joint association probabilities based on the standard JPDA recur-
sion, which performs a full enumeration of all the joint hypotheses.

def jpda(validation_matrix, likelihood_matrix):
num_tracks, num_detections = validation_matrix.shape

possible_assoc = list()
for track in range(num_tracks):

track_possible_assoc = list()
v_detections = np.flatnonzero(validation_matrix[track, :])
for detection in v_detections:

track_possible_assoc.append((track, detection))
possible_assoc.append(track_possible_assoc)

Compute all possible joint hypotheses
joint_hyps = itertools.product(*possible_assoc)

Compute valid joint hypotheses
valid_joint_hypotheses = (joint_hypothesis for joint_hypothesis in joint_hyps if is_

→˓valid_hyp(joint_hypothesis))

Compute likelihood for valid joint hypotheses
valid_joint_hypotheses_lik = dict()
for joint_hyp in valid_joint_hypotheses:

lik = 1
The likelihood of a joint hypothesis is the product of the likelihoods of its␣

→˓member hypotheses
for hyp in joint_hyp:

track = hyp[0]
detection = hyp[1]
lik *= likelihood_matrix[track, detection]

valid_joint_hypotheses_lik[joint_hyp] = lik

Compute the joint association probabilities
assoc_matrix = np.zeros((num_tracks, num_detections))
for track in range(num_tracks):

v_detections = np.flatnonzero(validation_matrix[track, :])
for detection in v_detections:

The joint assoc. probability for a track-detection hypothesis is the sum␣
→˓of the likelihoods of all

(continues on next page)

18 Chapter 3. Examples

PyEHM, Release 2.0a1

(continued from previous page)

joint hypotheses that include this hypothesis
prob = np.sum([lik for hyp, lik in valid_joint_hypotheses_lik.items() if␣

→˓(track, detection) in hyp])
assoc_matrix[track, detection] = prob

Normalise
assoc_matrix[track, :] /= np.sum(assoc_matrix[track, :])

return assoc_matrix

def is_valid_hyp(joint_hyp):
used_detections = set()
for hyp in joint_hyp:

detection = hyp[1]
if not detection:

pass
elif detection in used_detections:

return False
else:

used_detections.add(detection)
return True

3.2.4 Comparison

Now we can compare the above against EHM and EHM2, both in terms of accuracy and computation time. The accuracy
comparison is just a safe-guard check to make sure that EHM and EHM2 produce the same result as the standard JPDA.

EHM
now = datetime.datetime.now()
assoc_matrix_ehm = EHM.run(validation_matrix, likelihood_matrix)
dt_ehm = datetime.datetime.now() - now

EHM2
now = datetime.datetime.now()
assoc_matrix_ehm2 = EHM2.run(validation_matrix, likelihood_matrix)
dt_ehm2 = datetime.datetime.now() - now

Standard JPDA
now = datetime.datetime.now()
assoc_matrix_jpda = jpda(validation_matrix, likelihood_matrix)
dt_jpda = datetime.datetime.now() - now

Check if all results are the same
print(np.allclose(assoc_matrix_jpda, assoc_matrix_ehm, atol=1e-15)

and np.allclose(assoc_matrix_jpda, assoc_matrix_ehm2, atol=1e-15))

Compare the execution times
print('JPDA: {} seconds'.format(dt_jpda.total_seconds()))
print('EHM: {} seconds'.format(dt_ehm.total_seconds()))
print('EHM2: {} seconds'.format(dt_ehm2.total_seconds()))

3.2. Standard JPDA vs EHM vs EHM2 19

PyEHM, Release 2.0a1

True
JPDA: 103.464396 seconds
EHM: 0.021252 seconds
EHM2: 0.015013 seconds

The above results demonstrate the advantages of using the EHM and EHM2 classes over the standard JPDA. Both the
EHM and EHM2 algorithms exhibit significant computational gains compared to the standard JPDA, all while producing
exactly the same results. We can also observe that EHM2 is noticeably faster than EHM .

Total running time of the script: (1 minutes 43.526 seconds)

20 Chapter 3. Examples

CHAPTER

FOUR

LICENSE

PyEHM is licenced under Eclipse Public License 2.0. See License for more details.

This software is the property of QinetiQ Limited and any requests for use of the software for commercial use or other
use outside of the Eclipse Public Licence should be made to QinetiQ Limited.

The current QinetiQ contact is Richard Lane (rlane1 [at] qinetiq [dot] com).

21

https://github.com/sglvladi/pyehm/blob/main/LICENSE.md
https://www.qinetiq.com/en/

PyEHM, Release 2.0a1

22 Chapter 4. License

BIBLIOGRAPHY

[EHM1] Maskell, S., Briers, M. and Wright, R., 2004, August. Fast mutual exclusion. In Signal and Data Processing
of Small Targets 2004 (Vol. 5428, pp. 526-536). International Society for Optics and Photonics

[EHM2] Horridge, P. and Maskell, S., 2006, July. Real-time tracking of hundreds of targets with efficient exact
JPDAF implementation. In 2006 9th International Conference on Information Fusion (pp. 1-8). IEEE

[EHMPAT] Maskell, S., 2003, July. Signal Processing with Reduced Combinatorial Complexity. Patent Refer-
ence:0315349.1

23

PyEHM, Release 2.0a1

24 Bibliography

INDEX

A
add_edge() (pyehm.net.EHM2Net method), 9
add_edge() (pyehm.net.EHMNet method), 8
add_node() (pyehm.net.EHM2Net method), 9
add_node() (pyehm.net.EHMNet method), 8
associate() (pyehm.plugins.stonesoup.JPDAWithEHM

method), 12
associate() (pyehm.plugins.stonesoup.JPDAWithEHM2

method), 13

C
Cluster (class in pyehm.utils), 11
compute_association_probabilities()

(pyehm.core.EHM static method), 5
compute_association_probabilities()

(pyehm.core.EHM2 static method), 6
construct_net() (pyehm.core.EHM static method), 5
construct_net() (pyehm.core.EHM2 static method), 6
construct_tree() (pyehm.core.EHM2 static method),

6

D
depth (pyehm.net.EHM2Tree property), 10

E
EHM (class in pyehm.core), 5
EHM2 (class in pyehm.core), 6
EHM2Net (class in pyehm.net), 9
EHM2NetNode (class in pyehm.net), 7
EHM2Tree (class in pyehm.net), 10
EHMNet (class in pyehm.net), 8
EHMNetNode (class in pyehm.net), 7

G
gen_clusters() (in module pyehm.utils), 11
get_children() (pyehm.net.EHMNet method), 8
get_children_per_detection()

(pyehm.net.EHM2Net method), 9
get_edges() (pyehm.net.EHMNet method), 8
get_nodes_per_layer_subnet()

(pyehm.net.EHM2Net method), 10

get_parents() (pyehm.net.EHMNet method), 9

J
JPDAWithEHM (class in pyehm.plugins.stonesoup), 12
JPDAWithEHM2 (class in pyehm.plugins.stonesoup), 12

N
nodes (pyehm.net.EHM2Net property), 10
nodes (pyehm.net.EHMNet property), 9
nodes_forward (pyehm.net.EHM2Net property), 10
nodes_forward (pyehm.net.EHMNet property), 9
nodes_per_track (pyehm.net.EHM2Net property), 10
num_layers (pyehm.net.EHM2Net property), 10
num_layers (pyehm.net.EHMNet property), 9
num_nodes (pyehm.net.EHM2Net property), 10
num_nodes (pyehm.net.EHMNet property), 9

P
plot_net() (in module pyehm.plotting), 11
plot_tree() (in module pyehm.plotting), 12

R
root (pyehm.net.EHM2Net property), 10
root (pyehm.net.EHMNet property), 9
run() (pyehm.core.EHM static method), 5
run() (pyehm.core.EHM2 static method), 7

T
to_nx_graph() (in module pyehm.utils), 11

25

	Installation
	Install via pip
	Install from source
	Development

	API Reference
	Core API
	Net API
	Utils API
	Plotting API
	Plugins
	Stone Soup

	Examples
	Basic Example
	Formulating the possible associations between targets and measurements
	Computing joint association probabilities

	Standard JPDA vs EHM vs EHM2
	Problem formulation
	EHM vs EHM 2
	Standard JPDA
	Comparison

	License
	Bibliography
	Index

